sensing the FUTURE

InvenSense Developers Conference 2016

Improving Accuracy and Extending Battery Life in Wearable GPS Products

Wearable Fitness Challenges

Why do Wearables End Up in the Sock Drawer?

37% have discontinued use of their wearable. Why?

40% Too much of a hassle to continually recharge

29% Not accurate enough/didn't trust readings

26% Uncomfortable to wear

24% Did not provide continually interesting insights

sensing the **FUTURE**

The State of Wearables Today June 2016

InvenSense

GPS is a Wearable Battery Killer

Problem 1: GPS usage kills battery life

Fitbit Surge: - 7 day Battery life on standby - 5hr GPS Battery life

Apple Watch 2: - 10 hour battery life in workout mode without GPS - 5 hour battery life in workout mode with GPS

Android Fitness Apps - 4-6hr Battery Life w/ GPS

Many early smartwatches didn't include GPS due to power drain Users not happy with this easy solution due to accuracy sacrifice

Better Solution: Use <u>less</u> GPS

- Duty cycle GPS and bridge outages with sensors
 - Distance, speed and trajectory using less GPS
 - Minimize time using GPS, thus minimize battery drain

Accuracy: GPS or Sensors?

sensing the **FUTURE**

Problem 2: poor accuracy on wearables

- Sensors drift over time
- GPS not accurate enough on wearables
 - Small antenna
 - Attenuation from body
 - Arm swinging
 - Lack of assistance data to watch GPS

GPS from Gear S2

Solution: Combine GPS + sensors

- Improves accuracy of multipath GPS by filtering
- GPS can correct PDR sensor drift or offset errors (e.g. position drifts, stride length bias)

Coursa Sports Sensor-Assisted GPS Fitness Tracking FUTURE

Data Flow of Coursa Sports

- Provides distance & speed in real-time at low power
- Provides accurate post mission route from cloud

GPS Duty Cycling Concept

sensing the **FUTURE**

Coursa Sports Low Power Mode

- GNSS on for 15 sec then off for 45 sec
- Seamless route solution using only 25% GPS
- Distance and route are similar performance as GPS on all the time

- Coursa Sports (Low Power Mode)
- SPS used in duty cycle (points)
- GPS used in duty cycle (lines)

Duty Cycling Challenges

2016 God

- GPS needs to be left on for around 15 seconds to assure a few 'good' GPS measurements are received
- Reacquisition errors have to be filtered out by Coursa Sports

InvenSense

Coursa Sports Duty Cycling Modes

- How to optimally balance power consumption vs accuracy?
 - The right answer depends on the application and device being used
- Coursa Sports designed with 3 modes to control power vs accuracy

	Low Power Mode	Balanced Mode	Performance Mode
Usage of GPS (duty cycle)	Aggressive duty cycle (approx. 25% GPS)	Light duty cycle (approx. 50% GPS)	No duty cycle GPS + sensors
Power Consumption	30-60% less power than GPS on all the time	15-30% less power than GPS on all the time	1-10% more power than GPS on all the time
Distance/Speed	Similar to GPS on all the time	25-50% better than GPS on all the time	50-75% better than GPS on all the time
Route	Similar to GPS on all the time	Better in multipath environments such as downtown.	Better than GPS on all the time in all environments

Android & Android Wear Test Results

Coursa Sports on Android Wearables

- Only a few Android Wear devices have included GPS over the past year. Examples:
 - Sony Watch 3, Samsung Gear S2, Moto 360
- There are other good GPS implementations on wearables but they are not Android Wear

 – e.g. Fitbit Surge
- Moto 360 is one of the better GPS implementations on Android Wear and contains 6 axis (accel + gyro)

Example 1: Coursa Sports Performance Mode vs Strava in Open Sky

- Below example shows 'Performance Mode' of operation on a Moto 360 watch
 - GNSS on all the time for Strava in blue and Coursa Sports in red
 - Coursa Sports route is more accurate than GNSS on all the time, even in open sky when GNSS is performing at its best
 - Strava distance travelled error = 7.9%
 - Coursa Sports distance travelled error = 2.2%

Strava with GNSS on all the time

sensing the

FUTŬRE

Coursa Sports

Example 2: Coursa Sports Low Power vs Strava in Downtown GPS Multipath

- Below example shows 'Low Power Mode' of operation on a Moto 360 watch
 - Coursa Sports using 25% GPS duty cycle on the Moto 360
 - GPS on all the time for Strava on the Moto 360
 - Coursa Sports route similar to GPS on all the time, but with power savings on the Moto 360
 - Strava distance travelled error = 13.3%
 - Coursa Sports distance travelled error = 6.2%

Strava

Coursa Sports

sensing the

FUTŬRE

InvenSense Inc. Company Confidential

Example 2: Speed in Downtown

Person walked an approximately steady speed at 1.4 m/s, with some stops Coursa Sports is more accurate and does not suffer from GPS multipath errors

Example 3: Wearables Performance Comparison in Downtown Multipath

- Reference path = 2.65 km
- All paths have some error due to GPS multipath.
- Below example shows 'Performance Mode' of operation for Coursa Sports on a Moto 360 watch compared to:
 - 1. Fitbit Surge watch
 - 2.92 km (10.1% error)
 - 2. Apple Workout APP on the Apple Watch 2
 - 2.60 km (1.9% error)
 - 3. Samsung S Health running on Gear S2 watch
 - 1.84 km (31% error)
 - 4. Coursa Sports Performance Mode
 - 2.70 km (1.9% error)

Fitbit Surge

Apple Watch 2

S Health Gear S2

Coursa Sports on Moto 360

sensing the

FUTURE

InvenSense Developers Conference 2016

InvenSense

Wearable Energy Saving Example

How much energy can Coursa Sports save in comparison to GPS on all the time?

uBlox MAX-M8C operating in continuous mode @ 1 Hz

	Time to Fix (s)	Current Consumption (mA)	Voltage (V)	Power (mW)
Initial acquisition	28	21	3	63
Hot start reacquire	1	21	3	63
GNSS tracking @ 1Hz		17	3	51
6 axes Sensors + Coursa SW		3	1.8	5.4

Energy savings for Coursa Sports Low Power Mode

Time (minutes)	Coursa Sports Low Power, Energy Savings	
2	24%	
5	46%	
10	54%	
20	58%	
30	60%	

Coursa Sports on Android Phones

- Benchmark devices: Samsung S6 or Nexus 6
- Since phones have cloud connectivity the GPS implementations are noticeably better than watches
- Coursa Sports absolute distance/route performance dependent on baseline GPS performance

Example 4: Coursa Sports Low Power Mode on Track

- Below example shows 'Low Power Mode' of operation on an S6 phone
 - Coursa Sports (Low Power Mode)
 - GPS used in duty cycle

Example 4: Coursa Sports Height on the Flat Track

Track is flat with nearly no height gain/loss Coursa Sports is much more accurate than GPS on all the time

Example 5: Coursa Sports Performance Mode on S6 Phone in Downtown

- Below results all collected using Samsung Galaxy S6 phone
 - Baseline GPS of the S6 better than wearable GPS
 - Coursa Sports Performance Mode is most accurate
 - Strava
 - MyTracks
 - MapMyRun

Coursa Sports (Performance Mode)

sensing the

FUTŬRE

InvenSense

Example 5: Coursa Sports Speed in Downtown

Person walked an approximately constant speed at 1.4 m/s Coursa Sports is most accurate and does not suffer from GPS multipath errors

Speed for downtown trajectory using Samsung S6

Distance/Speed Benchmarking on Android Devices

- Coursa Sports designed as an SDK to work on a variety of devices
 - Accuracy benchmarking performed using several Android devices
- Hundreds of exercise sessions used to calculate the following statistics
- Statistics used from all environments (open sky + track + foliage + downtown)

	Distance/Speed Errors w.r.t. Distance Travelled
Coursa Sports Low Power (25% duty cycle)	7%
Coursa Sports Balanced (50% duty cycle)	5%
Coursa Sports Performance (no duty cycle)	4%
GPS on all the time at 1 Hz	8%

Comparing Coursa Sports to the Apple Watch Series 2

Apple Watch 2 Benchmark

- Apple released their Series 2 of the Apple Watch in September 2016
 - Focus is on fitness tracking
 - Walk, run, bike, swim...
- Apple Watch 2 validates approach taken by Coursa Sports
 - Speed/pace & distance provided in real-time
 - Route provided after finishing an exercise session and only displayed on the iPhone
- Apple Watch 2 lays down benchmark performance for Android vendors
 - Quality GPS implementation on a watch
 - Good distance & route accuracy

sensing the

FUTURE

Apple Watch GPS Implementation

- Apple has done a good job integrating GPS hardware on their Watch 2
 - Accuracy of GPS position & velocity similar to Android phone performance
 - Positions within 5 meter accuracy (correct side of road)
 - Initial acquisition time within a few seconds
 - Better positioning accuracy and acquisition timing than Android Wear implementations to date, such as Sony Watch 3, Gear S2 and Moto 360

 - Sony Watch 3 and Gear S2 had positioning accuracy good to 10's of meters Moto 360 had better positioning accuracy but it's acquisition time was longer than 15 seconds
- Apple benefits from good GPS to calibrate distance
 - Early testing shows Apple Watch 2 distance estimation accuracy around 3-4% on average through different GPS environments

InvenSense Inc. Company Confidential

Distance Benchmark Set by Apple

Accuracy benchmarking of Coursa Sports performed using several Android devices

	Average Distance Errors w.r.t. Distance Travelled
Apple Watch 2	3-4%
GPS on all the time	
Android Phone GPS-only	8%
Coursa Sports Performance on Android (GPS on all the time)	4%
Coursa Sports Balanced on Android (50% duty cycle)	5%
Coursa Sports Low Power on Android (25% duty cycle)	7%

Route Comparisons

sensing the **FUTURE**

- 1) Apple Watch 2 smooths out GPS errors (GOOD)
- 2) Apple Watch 2 smooths some turns when smoothing GPS multipath (BAD)
- 3) Apple Watch 2 does not provide a position when GPS signals are lost (BAD)

3) Apple Watch 2 does not provide a position indoors or when GPS signals are lost.

Coursa Sports solution is seamless.

InvenSense

Apple Watch Power Consumption

- Apple Watch 2 can be used in workout mode for 5 hours with GPS ON and 10 hours with GPS OFF
 - 273 mAh battery
 - 27 mA/hour extra burn with GPS on
- Coursa Sports Low Power Mode uses about 25-30% GPS through duty cycling
 - Should extend battery life of Apple Watch 2 with GPS ON to about 8 hours
- Coursa Sports Balanced Mode uses about 50% GPS through duty cycling
 - Should extend battery life of Apple Watch 2 with GPS ON to about 7 hours

sensing the

FUT

Apple Watch vs Android GPS vs Coursa Sports

<u>Conclusion</u>: Android devices can benefit from Coursa Sports to compete with the Apple Watch 2 performance benchmarks

	Distance Performance	Route Performance	Power Performance
Apple Watch 2	The benchmark, good distance estimation	Smooth in open sky and in mild multipath. Does not bridge GPS outages. Problems with turns.	5 hours with GPS ON
Android Phone GPS-only	2x worse than Apple Watch	Subject to GPS multipath errors and does not bridge GPS outages.	4-6 hours with GPS ON, depending on device
Coursa Sports	Can get Android devices to similar performance as Apple Watch in Coursa Sports Performance Mode	Smooth in all conditions & bridges GPS signal outages. Can get better path than Apple Watch 2 in signal loss scenarios and during turns.	3 hours more than Apple Watch 2 and Android mobile devices in Coursa Sports Low Power Mode

Coursa Sports Software & Integration

Cross-Platform SW Availability

	MIPS	Code (KB)	Data (KB)
Real-Time Software Requirements	<6	115	50

Application Processor or Microcontroller

Embedded Library for OEMs or SDK for App Developers

Coursa Sports Architecture

- Real time distance and speed computation is done on the device
- GNSS is duty cycled on the device
- Route is calculated on Coursa Sports servers
- Session data processed by the Coursa Sports server is available via REST APIs

SDK Integration Lifecycle

sensing the **FUTURE**

1] Request access to SDK & wait for approva Correspondence Internal Conferent Password Conferent Password Conferent Password Conferent Password Conferent Password 2] Login to download Android & iOS SDK

3] Integrate iOS & Android SDK using the <u>SDK key</u> granted to the account Verify <u>distance & speed</u>

4] Use unique user id's and upload data to the Coursa Sports servers

5] Use the <u>API key</u> to download <u>processed route</u> data from Coursa Sports servers

6] Test and verify

implementation

Coursa Sports Eval App

sensing the **FUTURE**

Eval app available for demo on Android, Android Wear and iOS devices

Thank You

